What drives Docker
N Non-HPC?

|ISC2016 - Linux Container Workshop

Docker Momentum

> [T Tinkering (Hello World)
» Continuous Dev/Int/Dep

» Microservices, hyper scale

» Big Data

» High Performance Computing

Datacenter Ops

Software Dev

Disclaimer: subjective exaggeration 2

Docker In Software Development

Spinning up production-like environment is great

» MongoDB, PostreSQL, memcached as separate containers

» python2.7, python3.4

LiIke python's virtualenv on steroids,
iteration speedup through reproducibility

Docker in HPC development

Spinning up production-like environment is...

» ...not that easy

» focus more on engineer/scientist, not the software-developer

1. For development it might work

» close to non-HPC software dev

2. But is that the iteration-focus?

» rather job settings / input data”?

Separation of Concerns?

Split input iteration / development from operation

» non-distributed stays vanilla

» transition to HPC cluster using tech to foster operation

-
i »
: .
=]
s T .

Input/Dev

&

docker

. . | |
' . |

. l PSS . . . a
P = — .

c.°““’°36~

cﬂoﬂ“‘,@ao% openstack’

Orchestration

Non-HPC Is about Services

... hot Workloads

» BigData crunching (batch processing) is more in HPC camp

» where Stream-Processing (Spark, Storm, Kaftka Stream) is service again

1. High Performance Big Data

» Hardware vendor supply performance, but does the stack change?

2. Bio-science (other fast iterating disciplines)

» repeatability by packaging via Container

Batch Systems

1. Workload Scheduler

» single host SLURM jobs are low-hanging fruit

» complex for distributed workloads (how to spawn remote tasks?)

2. Simple Queue-System
» RabbitMQ, ZeroMQ), Redis

3. Data-Driven Computational Pipelines

eo nexciflow

Service Orchestration

1. Docker SWARM

» Simple to grasp

» extends and builds on Docker AP

2. Datacenter Orchestration

» Derived from DC operational need of Google (Kubernetes)

» ...academic project from Berkeley. (Mesos)

Integration

The Social/Shrink Part

1. When disrupting a piece

» everyone throws in his wish-list
» describes the current state as desired state

» some resist change

2. With Container in particular

» VMs were easy to align with physical machine world

» (Containers break this model

11

The Social/Shrink Part #2

1. With AWS EC2...

» |T departments waved with the CreditCard as a threat

» It was easy to try something at scale

2. With Containers

» NO-0Nne IS going to tolerate complex setup procedures

> ‘'works on my laptop’ is going to be extinct

3. With Unikernels/AWS Lambda

» MS spin-up redefines state-less... (but that's for next time)

12

Downscaling

‘Bottom up’-Stack

1. Work on ProjectX

> Spin up (mMinimalistic) dependency stack

e should reside within ProjectX

» only change the code of ProjectX

2. Possible in HPC?

» Are HPC stacks reducible to laptop-consumable size?

14

Docker 1.12

Docker-Engine 1.12 [SWARM

SWARM now included

» docker-engines are either manager/worker
» they form a SWARM cluster

» no external Key/Value store needed anymore

Manager Manager o Manager

I}

10

Docker-Engine 1.12 |Services

docker service

» stacks are bundled as services

» health-checks (!), self-healing, rolling-update, canary deployment

e Ma —> Manager s Manager
docker service create
Accepts command from client and creates service object

nager
Orchestrator § Reconciliation loop for service objects and creates tasks i 1 \ M m \ m I: 111

Allocator Allocates IP addresses to tasks
Worker Worker

$ docker service create --scale 5 --name frontend --

Manager Node

Scheduler Assigns tasks to nodes

Dispatcher @} Checks in on workers

network myoverlay --publish 80/tcp
frontend image:latest

Worker Connects to dispatcher to check on assigned tasks
Worker Node
Executor Executes the tasks assigned to worker node

Docker-Engine 1.12 [TLS

build-in (but swappable) TLS

» all traffic encrypted

Manager Node Manager Node Manager Node

A

g TS a TS g s

Certificate Certificate =.| Certificate
@ Authority @ Authority 3 Authority

[a)

Worker Worker

a TS g TS

18

Docker-Engine 1.12 |MeshNet

Build in Load-Balancer

» services are load-balanced by default

.
| >

G Docker user assigns a global
port for a service

Manager Manager Manager

End user accessing
www.website.com

Port 1000
Worker Worker Worker

Load Load Load
Balancing Balancing Balancing

19

Docker-Enagine 1.12 [HPC

1. You guys don't scream loud enough

» Feature-wise they target us cloud guys. :)

2. OK, not true...

» HP-Big Data could employ the service model for their workloads

» It's more service deployment then distributed workload-deployment (MPI)

20

Chunk Systems Up

Reminder VMs / System Containers

KERNEL SERVICE
HYPERVISOR Userland (OS) Userland (OS)

Userland (OS) Userland (OS)

SERVICE SERVICE

Userland (OS)

Userland (OS)

KERNEL

SERVICE

HOST KERNEL HOST KERNEL
SERVER SERVER

superwsor superwsor superwsor

Userland (OS) —

22

One Laver at a time

|deally the container runs one process

> ENTRYPOINT might be something to set up the inner working

» NO Init-system needed

service (postgres)

23

User-Land Optimisation

Reproducibility / Downscalinc

Running OpenFOAM on small scale is cumbersome

» manually install OpenFOAM on a workstation

» e confident that the installation works correctly

@ A containerised OpenFOAM installation tackles both

Reproducability of CAE-computations through Immutable Application Containers

Christian Kniep*
'QNIB Solutions

Ensuring the reproducibility of computations on various compute node generations throughout a
long period of time is vital for a lot of reasons. An automotive vendor is forced to keep the results
of CAE workloads due to legal requirements. Instead of keeping the outcome of the computation, a
stable reproduction would be preferred. Unfortunately this is unlikely in current environments, due
to a rather short life-cycle of HPC infrastructure.

This conservative "never touch a running system”-approach conflicts with the agile way of main-
taining IT infrastructure, which fosters fast update cycles to prevent software bugs (security or
functional) from impacting operations.

This paper aims to bring these two approaches together by showing that an 'Immutable Applica-
tions Container’ (using Docker) is capable of reproducing the results, even if the ecosystem moves
forwards,

I. INTRODUCTION On the other hand the formalization of the processes

burdens the agility and the adoption of new technolo-

This research is motivated by the previous paper 'Con-
tainerized MPI workloads'®, which showed that the per-
formance impact introduced by containerization is neg-
ligible. Projecting this conclusion into the automotive

http://anib.org/immutable-paper

gies, Fitting virtual machines like VMware clusters into
the paper-trail caused some friction (since they are dis-
posable within a short period of time, but still a server
with assigned resources), let alone containers (disposable

YoullllJ http://gnib.org/immutable

25

http://qnib.org/immutable
http://qnib.org/immutable-paper

OpenFOAM Benchmark

Results

* Pressure remains the same among minor releases

-~

—_—

OA

m

Op

@

1222 8.6402816 p

~

Oper

M
-

o«

OAM

n

3.0/2.3.1. 8.6402463 p

(4 4]

e Runtime varies a lot

)
Y
5

o o

()
r
o
-
N
o B
= .

) L)
@ ® &

~QNIB 38

Reproducability of CAE-computations through Immutable Application Containers

YoulllE) http://gnib.org/immutable ——

'QNIB Solutions

Ensuring the reproducibility of computations on various compute node generations throughout a
long period of time is vital for a lot of reasons. An automotive vendor is forced to keep the results
of CAE workloads due to legal requirements. Instead of keeping the outcome of the computation, a
stable reproduction would be preferred. Unfortunately this is unlikely in current environments, due
to a rather short life-cycle of HPC infrastructure.

This conservative "never touch a running system”-approach conflicts with the agile way of main-
taining IT infrastructure, which fosters fast update cycles to prevent software bugs (security or
functional) from impacting operations.

This paper aims to bring these two approaches together by showing that an "Immutable Applica-
tions Container’ (using Docker) is capable of reproducing the results, even if the ecosystem moves
forwards.

I. INTRODUCTION On the other hand the formalization of the processes
burdens the agility and the adoption of new technolo-

This research is motivated by the previous paper 'Con- gies. Fitting virtual machines like VMware clusters into
tainerized MPI workloads', which showed that the per- the paper-trail caused some friction (since they are dis-
formance impact introduced by containerization is neg- posable within a short period of time, but still a server

liiblc. Pmi'cctiﬁ this conclusion into the automotive with assigned resources), let alone containers (disposable
http://gnib.org/immutable-paper e

http://qnib.org/immutable
http://qnib.org/immutable-paper

MP| Benchmark

Y
distribution’s results [2 task @2nodes]
5
4
2 3
-
L —— —
C—
1
O native © cos7 cos6 © u12
0
4 8 16 32 64 128 256 512 1024
Message Size (KB)
MPI benchmark was not in original HPC Advisory Council Presentatio

Containerization of High Performance Compute Workloads using Docker

YouTH) http://anib.org/mpi Cuitin Ko

The High Performance Computing (HPC) community approached traditional virtualization from
certain angles during the years. The promised holy grail claims to reduce the complexity of operating
a datacenter and provide an unseen flexibility by customizing the application environment for the
compute users. Due to the introduced overhead in terms of performance, modularity and other
shortcommings, it never took off.

By leveraging the LinuX Containers (LXC) infrastructure in the Linux kernel, the newest entrant
docker gets rid of an additinal hypervisor and uses the hosts native kernel. This minimizes the
introduced overhead and provides native access to resources like the InfiniBand fabric, accelerator
cards, filesystems and more.

The study conducted in this paper shows that a compute environment using docker containers is
able to compete with native installation, while providing a separation and reusability that might
change the way clusters are maintained in the near future.

I. INTRODUCTION II. TESTBED
A. Hardware
software stack of a HPC cluster system is the re- To conduct this benchmark a 8 node cluster (nickname:

e ————iettieilit i
http://gnib.org/mpi-paper

27

http://qnib.org/mpi
http://qnib.org/mpi-paper

